Ermüdung
-
Herausforderungen der industriellen Anwendung von nanomodifizierten und hybriden Werkstoffsystemen im Rotorblattleichtbau (HANNAH)Beim Forschungsprojekt HANNAH handelt es sich um das Anschlussvorhaben des Forschungsprojekts LENAH. In LENAH wurden Werkstoffsysteme aus den Bereichen „nanomodifizierte Werkstoffe“ und „hybride Laminate“ entwickelt, getestet und numerisch simuliert. Hierdurch konnte das hohe Potential dieser Werkstoffsysteme für die Anwendung im Rotorblattbau zunächst unter Laborbedingungen nachgewiesen werden. Demnach sind die untersuchten Werkstoffsysteme insbesondere hinsichtlich der Ermüdungsresistenz aktuell etablierten Materialien weit überlegen. Im Folgeprojekt HANNAH steht nun die (Weiter-) Entwicklung von Fertigungs- und Simulationsverfahren für diese Werkstoffsysteme für industrielle Maßstäbe im Vordergrund. Ziel ist zum einen die hervorragenden Eigenschaften der entwickelten Werkstoffsysteme auch in der Großserienproduktion zu gewährleisten sowie das mechanische Verhalten zur Beantwortung industrienaher Fragestellungen simulieren zu können. In diesem Kontext entwickelt das ISD materialspezifische Simulationsmodelle, um in Zukunft Prozesse der Materialentwicklung sowie der Bauteilauslegung für nanomodifizierte Werkstoffe und hybride Laminate kosten- und zeiteffizient auf Basis numerischer Prognosen gestalten zu können.Leitung: Prof. Dr-Ing. habil. Raimund RolfesTeam:Jahr: 2019Förderung: Bundesministerium für Wirtschaft und Energie (BMWI)Laufzeit: 01.03.2019 – 28.02.2022
Nanoverbundwerkstoffe
-
Herausforderungen der industriellen Anwendung von nanomodifizierten und hybriden Werkstoffsystemen im Rotorblattleichtbau (HANNAH)Beim Forschungsprojekt HANNAH handelt es sich um das Anschlussvorhaben des Forschungsprojekts LENAH. In LENAH wurden Werkstoffsysteme aus den Bereichen „nanomodifizierte Werkstoffe“ und „hybride Laminate“ entwickelt, getestet und numerisch simuliert. Hierdurch konnte das hohe Potential dieser Werkstoffsysteme für die Anwendung im Rotorblattbau zunächst unter Laborbedingungen nachgewiesen werden. Demnach sind die untersuchten Werkstoffsysteme insbesondere hinsichtlich der Ermüdungsresistenz aktuell etablierten Materialien weit überlegen. Im Folgeprojekt HANNAH steht nun die (Weiter-) Entwicklung von Fertigungs- und Simulationsverfahren für diese Werkstoffsysteme für industrielle Maßstäbe im Vordergrund. Ziel ist zum einen die hervorragenden Eigenschaften der entwickelten Werkstoffsysteme auch in der Großserienproduktion zu gewährleisten sowie das mechanische Verhalten zur Beantwortung industrienaher Fragestellungen simulieren zu können. In diesem Kontext entwickelt das ISD materialspezifische Simulationsmodelle, um in Zukunft Prozesse der Materialentwicklung sowie der Bauteilauslegung für nanomodifizierte Werkstoffe und hybride Laminate kosten- und zeiteffizient auf Basis numerischer Prognosen gestalten zu können.Leitung: Prof. Dr-Ing. habil. Raimund RolfesTeam:Jahr: 2019Förderung: Bundesministerium für Wirtschaft und Energie (BMWI)Laufzeit: 01.03.2019 – 28.02.2022
-
Funktionalisierte, multiphysikalisch optimierte Klebstoffsysteme für die inhärente Strukturüberwachung von Rotorblättern (Func2Ad)Die Performance und Zuverlässigkeit des Rotorblattes ist entscheidend für die Effizienz einer Windenergieanlage über ihren gesamten Lebenszyklus. Die Blätter machen einen Großteil der Anlagenkosten aus – Ihre Herstellungs- und Wartungskosten sind vergleichsweise hoch. Die Klebetechnik im Rotorblatt ist eine Schlüsseltechnologie zur Erzielung von Wettbewerbsvorteilen in der Windbranche. Die Verarbeitungs- und Härteeigenschaften (Prozessierbarkeit) der Klebstoffe sowie ihre Betriebsfestigkeit (Ermüdungsfestigkeit) im ausgehärteten Zustand sind zwei wesentliche Stellschrauben in Bezug auf die Anlagenökonomie bzw. die Rendite. Eine Dritte würde die Ferndiagnose der Klebeverbindungen des Rotorblattes darstellen. Das hier vorgeschlagene Forschungsprojekt zu partikelmodifizierten Klebesystemen für die Windbranche setzt an den genannten drei Punkten an. Eine Haupinnovation ist dabei die Funktionalisierung des Klebeharzes durch Partikelmodifikation zur Realisierung eines den Klebeverbindungen am Rotorblatt inhärenten Strukturüberwachungssystems. Dies soll durch die Modifikation der elektrischen Eigenschaften des Klebeharzes geschehen. Gleichzeitig sollen auch die Prozessierbarkeit und die Ermüdungsfestigkeit des Klebstoffes durch die Modifikation positiv beeinflusst werden. Wird das modifizierte Harzsystems nur für einen der drei genannten Aspekte optimiert, besteht die Gefahr einer schlechten Performance bzgl. der anderen. Die physikalischen Eigenschaften des Klebstoffes dürfen daher für die drei Anforderungsbereiche nicht getrennt, sondern müssen in ihrem Zusammenspiel und ihren Wechselbeziehungen gemeinsam betrachtet und optimiert werden. Um diese Optimierung und die Erhöhung der Effizienz der multiphysikalischen Materialmodelle werden innerhalb der Simulationsumgebung Methoden des maschinellen Lernens eingesetzt.Leitung: Prof. Dr-Ing. habil. Raimund RolfesTeam:Jahr: 2023Förderung: Bundesministerium für Wirtschaft und Klimaschutz, FKZ 03EE3069 A-FLaufzeit: 01.01.2023-31.12.2025
Materialmodellierung
-
Herausforderungen der industriellen Anwendung von nanomodifizierten und hybriden Werkstoffsystemen im Rotorblattleichtbau (HANNAH)Beim Forschungsprojekt HANNAH handelt es sich um das Anschlussvorhaben des Forschungsprojekts LENAH. In LENAH wurden Werkstoffsysteme aus den Bereichen „nanomodifizierte Werkstoffe“ und „hybride Laminate“ entwickelt, getestet und numerisch simuliert. Hierdurch konnte das hohe Potential dieser Werkstoffsysteme für die Anwendung im Rotorblattbau zunächst unter Laborbedingungen nachgewiesen werden. Demnach sind die untersuchten Werkstoffsysteme insbesondere hinsichtlich der Ermüdungsresistenz aktuell etablierten Materialien weit überlegen. Im Folgeprojekt HANNAH steht nun die (Weiter-) Entwicklung von Fertigungs- und Simulationsverfahren für diese Werkstoffsysteme für industrielle Maßstäbe im Vordergrund. Ziel ist zum einen die hervorragenden Eigenschaften der entwickelten Werkstoffsysteme auch in der Großserienproduktion zu gewährleisten sowie das mechanische Verhalten zur Beantwortung industrienaher Fragestellungen simulieren zu können. In diesem Kontext entwickelt das ISD materialspezifische Simulationsmodelle, um in Zukunft Prozesse der Materialentwicklung sowie der Bauteilauslegung für nanomodifizierte Werkstoffe und hybride Laminate kosten- und zeiteffizient auf Basis numerischer Prognosen gestalten zu können.Leitung: Prof. Dr-Ing. habil. Raimund RolfesTeam:Jahr: 2019Förderung: Bundesministerium für Wirtschaft und Energie (BMWI)Laufzeit: 01.03.2019 – 28.02.2022
-
Funktionalisierte, multiphysikalisch optimierte Klebstoffsysteme für die inhärente Strukturüberwachung von Rotorblättern (Func2Ad)Die Performance und Zuverlässigkeit des Rotorblattes ist entscheidend für die Effizienz einer Windenergieanlage über ihren gesamten Lebenszyklus. Die Blätter machen einen Großteil der Anlagenkosten aus – Ihre Herstellungs- und Wartungskosten sind vergleichsweise hoch. Die Klebetechnik im Rotorblatt ist eine Schlüsseltechnologie zur Erzielung von Wettbewerbsvorteilen in der Windbranche. Die Verarbeitungs- und Härteeigenschaften (Prozessierbarkeit) der Klebstoffe sowie ihre Betriebsfestigkeit (Ermüdungsfestigkeit) im ausgehärteten Zustand sind zwei wesentliche Stellschrauben in Bezug auf die Anlagenökonomie bzw. die Rendite. Eine Dritte würde die Ferndiagnose der Klebeverbindungen des Rotorblattes darstellen. Das hier vorgeschlagene Forschungsprojekt zu partikelmodifizierten Klebesystemen für die Windbranche setzt an den genannten drei Punkten an. Eine Haupinnovation ist dabei die Funktionalisierung des Klebeharzes durch Partikelmodifikation zur Realisierung eines den Klebeverbindungen am Rotorblatt inhärenten Strukturüberwachungssystems. Dies soll durch die Modifikation der elektrischen Eigenschaften des Klebeharzes geschehen. Gleichzeitig sollen auch die Prozessierbarkeit und die Ermüdungsfestigkeit des Klebstoffes durch die Modifikation positiv beeinflusst werden. Wird das modifizierte Harzsystems nur für einen der drei genannten Aspekte optimiert, besteht die Gefahr einer schlechten Performance bzgl. der anderen. Die physikalischen Eigenschaften des Klebstoffes dürfen daher für die drei Anforderungsbereiche nicht getrennt, sondern müssen in ihrem Zusammenspiel und ihren Wechselbeziehungen gemeinsam betrachtet und optimiert werden. Um diese Optimierung und die Erhöhung der Effizienz der multiphysikalischen Materialmodelle werden innerhalb der Simulationsumgebung Methoden des maschinellen Lernens eingesetzt.Leitung: Prof. Dr-Ing. habil. Raimund RolfesTeam:Jahr: 2023Förderung: Bundesministerium für Wirtschaft und Klimaschutz, FKZ 03EE3069 A-FLaufzeit: 01.01.2023-31.12.2025